

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-142829

An Integrated Performance
Visualizer for MPI/OpenMP
Programs

J. Hoeflinger, B. Kuhn, P. Petersen, H. Rajic, S. Shah, J.
Vetter, M. Voss, R. Woo

This article was submitted to
Workshop on OpenMP Applications and Tools, West Lafayette, IN,
July 30-31, 2001

February 25, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

An Integrated Performance Visualizer for MPI/OpenMP Programs�

Jay Hoeflingery Bob Kuhny Paul Peterseny Hrabri Rajicy

Sanjiv Shahy Jeff Vetterz Michael Vossy Renee Wooy

yKAI Software zCenter for Applied Scientific Computing
Intel Americas, Inc. Lawrence Livermore National Laboratory

Champaign, Illinois 61820 Livermore, California 94551

Abstract

1 Introduction

Cluster computing has emerged as a defacto standard in parallel computing over the last decade. Now, researchers
have begun to use clustered, shared-memory multiprocessors (SMPs) to attack some of the largest and most complex
scientific calculations in the world today [2, 1], running them on the world’s largest machines including the US DOE
ASCI platforms: Red, Blue Mountain, Blue Pacific, and White.

MPI has been the predominant programming model for clusters [3]; however, as users move to “wider” SMPs, the
combination of MPI and threads has a “natural fit” to the underlying system design: use MPI for managing parallelism
between SMPs and threads for parallelism within one SMP.

OpenMP is emerging as a leading contender for managing parallelism within an SMP. OpenMP and MPI offer their
users very different characteristics. Developed for different memory models, they fill diametrically opposed needs for
parallel programming. OpenMP was made for shared memory systems, while MPI was made for distributed memory
systems. OpenMP was designed for explicit parallelism and implicit data movement, while MPI was designed for
explicit data movement and implicit parallelism. This difference in focus gives the two parallel programming frame-
works very different usage characteristics. But these complementary usage characteristics make the two frameworks
perfect for handling the two different parallel environments presented by cluster computing: shared memory within a
box and distributed memory between the boxes.

Unfortunately, simply writing OpenMP and MPI code does not guarantee efficient use of the underlying cluster
hardware. What is more, existing tools only provide performance information about either MPI or OpenMP, but not
both. This lack of integration prevents users from understanding the critical path for performance in their application.
This integration also helps users adjust their expectations of performance for their application’s software design. Once
the user decides to investigate their application’s performance, they need detailed information about the expense of op-
erations in their application. Most likely, message passing activity and OpenMP regions are related to these expensive
operations. Viewed in this light, the user needs a performance analyzer to understand the complex interactions of MPI
and OpenMP. For message passing codes, several performance analysis tools exist: Vampir, TimeScan, Paragraph,
and others [make citations]. For OpenMP codes there is GuideView and a few other proprietary tools from other
vendors [make citations]. However, in practice, there is little production quality support for the combination of MPI
and OpenMP.

As a result, KAI Software has partnered with the Department of Energy through an ASCI Pathforward contract to
develop a tool called Vampir/GuideView, or VGV. This tool combines the capabilities of Vampir and GuideView, into

�This work was performed under the auspices of the U.S. Dept. of Energy by University of California LLNL under contract W-7405-
Eng-48. Authors may be contacted at:fjay.p.hoeflinger, bob.kuhn, paul.m.petersen, hrabri.rajic, sanjiv.shah,
michael.voss, renee.woo g@intel.com andvetter@llnl.gov .

1

one tightly-integrated performance analysis tool. From the outset, its design targets performance analysis on systems
with thousands of processors.

The purpose of this paper is to describe this tool, how it may be used, and how it can help pin-point the source of
performance problems in MPI/OpenMP programs.

2 Goals of the Project

The main goals of the VGV project are to create an integrated MPI/OpenMP performance analysis tool that is easy to
use and that scales well to even the largest systems currently available. This new tool is largely based on the existing
Vampir and GuideView tools.

2.1 Scalability

A performance analysis tool faces new problems when it is used for systems with thousands of processors. If the tool
is not careful, the amount of information gathered about the performance of a program can get very large, filling disks
or causing large data transfer times. The amount of information displayed on-screen can overwhelm the user if it is
not displayed appropriately, and on-screen display space is limited, anyway. The aggressive goal of the VGV project
is to quadruple the number of processors that can be analyzed every year for the next two years. This year VGV can
handle 1000 processors.

2.2 Integration

To perform effective performance analysis with VGV, there must be an integration of information from Vampir and
GuideView. This not only avoids the work of manually coordinating output from the two tools, but also provides a
platform for synthesizing an overall performance report. The performance data of both tools should also be integrated
with source code information.

2.3 Effective Data Presentation

VGV should present an interface which makes the experience of using it for solving performance problems on large
machines not materially different from solving such problems on small systems. The tool should also be able to draw
the user’s attention to potential performance problems, and help the user locate the source of those problems in the
program.

3 Using MPI with OpenMP

Before describing how VGV intends to meet its goals, we will briefly mention some key issues that must be addressed
when using MPI with OpenMP. MPI may be used with OpenMP, but they have no knowledge of each other, so a few
basic rules must be followed to ensure that they do not interfere with each other.

In general, MPI implementations are not thread-safe, so MPI functions can not be safely used when more than one
OpenMP thread is active. Therefore, calls to MPI functions should be done either outside OpenMP parallel regions,
as shown in Figure 1, or inside a region in which only one thread is active, such as aMASTERregion or aSINGLE
region, as shown in Figure 2.

Reviewers note: In the full paper, we will address other MPI/OpenMP issues.

4 Structure of the Tool

The flow of the integrated tool follows 4 steps:

1. instrumenting the program at compile time,

2. generating an integrated MPI/OpenMP trace file at runtime,

2

CALL MPI SEND(A(1), N, MPI REAL, 1, tag, comm, ierr)
CALL MPI RECV(A(1), N, MPI REAL, 0, tag, comm, status, ierr)

!$omp parallel do shared(A, B, N)
DO I=1,N

B(I) = F(A(I))
END DO

Figure 1: Example of using MPI to exchange data outside an OpenMP parallel region.

!$omp parallel shared(A, B, N)
!$omp do

DO I=1,N
B(I) = F(A(I))

END DO
!$omp master

CALL MPI ALLREDUCE(A, RA, N, MPI REAL, MPI SUM, 0, comm)
!$omp end master
!$omp barrier ! to insure consistent memory
!$omp do

...
!$omp end parallel

Figure 2: Example of using MPI to do a reduction operation inside an OpenMP parallel region.

3. post-run performance analysis for MPI with Vampir

4. analyzing OpenMP performance with GuideView.

This design integrates Vampirtrace and Vampir with the OpenMP components, Guide, the Guide Runtime Library,
and GuideView.

Like most MPI performance analysis tools, Vampirtrace uses the MPI library wrapper interface for instrumentation.
As each MPI call is performed, an event is written to a trace file. Vampir is the post-run trace file analysis tool.

Guide is a portable OpenMP compiler for Fortran and C++ that restructures source code and inserts calls to the
Guide Runtime Library. The Guide Runtime Library layers on top of threads to implement OpenMP functions. The
program is instrumented to call clock timers at all the significant OpenMP events. At the end of a run, the information
gathered from these timers is written into a statistics file.

The heart of the MPI and OpenMP integration occurs at runtime. The instrumentation of OpenMP and MPI
requires coordination. This is achieved by adding OpenMP events to the Vampirtrace API. The Guide Runtime Library
is modified to instrument interesting OpenMP events. For each interesting OpenMP event, the timers are put into a
data structure that is time stamped and sent to the log file via the new API.

5 Usage of the Tool

Once an integrated MPI/OpenMP trace file has been created during the application run, it can be viewed by an inte-
grated user interface. Vampir shows the tracefile events ordered by time in the timeline display. When an MPI process
executes an OpenMP region, a wiggle or glyph appears at the top of that process’ time line. The user can select that
glyph to view that OpenMP region or can select a set of MPI processes or a time line section for OpenMP analysis.

OpenMP analysis aggregates the OpenMP data structures from all the tracefile events in the selection. Then the
aggregated data is written to a file where a GuideView server process reads the file.

GuideView displays the OpenMP regions for each MPI process as a separate set of OpenMP data. In this way, the
user can use GuideView tools to select a subset of the hundreds of MPI processes that may be running and sort by any
OpenMP performance measure. Examples of OpenMP performance measures for sorting are: scheduling imbalance,

3

Figure 3: Vampir display of MPI-only code, showing load imbalance.

lock time, time spent in a locked region, and overhead. The user can specify that GuideView show the top or bottom
n, where the user specifiesn. This mechanism allows a user to compose compound performance queries by sorting
on one criteria, filtering the top responders, and then sorting by another criteria.

The user can also view the subroutine profile for one or a selection of MPI processes within GuideView. This
can be viewed as inclusive to allow the user to understand the call tree structure, or exclusive to understand which
subroutines consume the most time.

One of the important uses of the tool is to locate regions of the program where some processors spend much time
waiting while others are doing useful work. This is referred to as a load-imbalance. From the color-coded display, the
user can determine how much time each processor spends waiting.

A key use of VGV is source code browsing. The source code associated with any part of the performance data
may be brought up in a browsing window by clicking the mouse on the data display.

6 Finding Performance Problems with VGV

Reviewers note: in the final paper this section will be significantly expanded.
In Figure 3, the Vampir display for an MPI-only version of a code is shown. Vampir clearly shows a load imbalance

between the processors (red-colored bars on a user’s screen). The processes that have smaller regions finish their
computation early and enter communication, effectively becoming idle until the other MPI processes finish their
domain.

In Figure 4, the GuideView display shows the an OpenMP-only version of the same code is able to load balance
quite effective.

When you combine both MPI and OpenMP (Figure 5), Vampir shows almost solid computation (almost no red-

4

Figure 4: GuideView display of OpenMP-only code, showing load balanced.

Figure 5: VGV display of MPI/OpenMP code, load is balanced by OpenMP.

5

colored bars), with little communication delay. The GuideView window shows that the OpenMP level is also very
efficient in this version. Finally, notice that the master MPI process is performing more work, which shows up in
GuideView.

7 Scalability of the Tool

Prior to this project, GuideView already used light-weight summarization techniques to analyze performance statistics
for the OpenMP processors. Vampir, on the other, wrote trace records to a single tracefile for every MPI call. This
produces a potentially very large trace file that must not only be stored, but also completely read and analyzed to
provide the user with a display.

To be scalable, VGV must adequately address the following issues:

� the disk storage requirements of an event-based tracing tool could become enormous for long runs with large
numbers of processors,

� workstation screens have limited space for displaying performance information,

� simply finding a potential performance problem may be very hard in the blizzard of information potentially
generated from a massive run.

Some of these issues have already been addressed in the current version of VGV. Others will be implemented
during the remainder of the project.

VGV will attempt to reduce the size of the trace file through several means:

event compression - Specialized trace records can be used for some events and encoded to save space. Collective
communication events, which usually require a full trace record for every process can be reduced to a single
trace record and a series of small records, one per task. Also, source code line numbers can be encoded to save
space in each trace record.

event combination - Events occurring commonly together can be replaced by a single event. Very short events which
are issued until the MPI state changes (e.g. MPIIProbe / MPITest) can be replaced by a single event covering
the entire interaction.

event summarization - Some events can be summarized by maintaining only min/max/average values and discard-
ing the events.

structured trace file - The single trace file can be replaced by multiple, hierarchically structured files. This also
saves processing time because a top-level summary file can processed much more quickly than can the whole
original trace file. This allows the user to see a summary then drill down to other levels in the hierarchy for
display.

tracing/instrumentation control - Tracing can be disabled or enabled according to a variety of criteria. The user
could place enable/disable trace calls in the code, or could select specific events to enable/disable, or could trace
only certain MPI processes, or a variety of other criteria.

The on-screen presentation of the performance information can be made scalable through vertical scrolling of MPI
process time-line information, as well as back-to-front stacking of time-lines.

VGV will use data reduction to attempt to identify potential performance problems for the user. Statistical analysis
of the data for a single interval of the user’s program can identify processes or processors that require unusual (high or
low) amounts of various resources (e.g., cache misses, time, memory access time), and mark them for the user.

We have found that the execution time of the analysis tool can be a major fraction of the time required for the tool.
For this reason, the tool will be partitioned into a display component (DC) and a trace processing component (TPC).
The TPC can be parallelized, and run on a small number of processors. The DC can be potentially multi-threaded.

6

8 Conclusion

Vampir/GuideView is intended to be a flexible, easy-to-use tool for finding performance problems in programs written
with a combination of MPI and OpenMP, that run for extremely long times and use thousands of processors. We know
of no other tool targeted at MPI/OpenMP, and certainly none with the ability to handle such massive runs. During the
remaining two years of its development for the ASCI project, we believe that it will become a tool that can be used for
the largest ASCI clusters, and will help users pin-point performance anomalies in their codes.

References

[1] A.C. Calder, B.C. Curtis, and et al. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh
Refinement on Thousands of Processors. InSupercomputing 2000: High Performance Networking and Computing
Conference, 2000. electronic pub.

[2] A.A. Mirin, R.H. Cohen, and et al. Very High Resolution Simulation of Compressible Turbulence on the IBM-SP
System. InSupercomputing ’99: High Performance Networking and Computing Conference, 1999. electronic
pub.

[3] G.F. Pfister.In Search of Clusters: The Coming Battle in Lowly Parallel Computing. Prentice Hall, Upper Saddle
River, NJ, 1995.

7

